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Abstract

A single-input multiple-output nonlinear identification method is developed and 

applied to damage detection. The identification method is based on an Auto Regressive 

Exogenous stochastic model. The coefficients of the model are a function o f the output 

states. The effects of noise on the input and outputs are minimized by utilizing 

Generalized Least Squares. The identification method is demonstrated on a three degree- 

of-freedom nonlinear numerical example. Data from tests performed at Los Alamos on a 

nonlinear eight degree-of-freedom system are used to demonstrate its performance in a 

damage detection application.
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Chapter 1 - Introduction

The utility o f system identification for health monitoring and damage detection 

has been documented in publications for numerous years [1,2]. Historically, this effort 

has focused on assuming the system being evaluated is linear. This assumption is 

adequate for many systems over the operational envelope o f interest, an example being 

small amplitude oscillations of a welded structure.

This dissertation explores a method o f identification for damage detection of 

nonlinear systems focused towards, but not limited to, structures and mechanisms. These 

nonlinearities can be soft, as in geometric stiffening, and hard [3], such as bilinear springs 

and stiffness dead-hands generated by cracks opening and closing. Furthermore, the 

goal is to develop a method that can be applied to a Single-Input/Multiple-Output 

(SI/MO) black-box system with both the input and outputs corrupted with noise.

Health monitoring is generally accomplished by analyzing the baseline system to 

establish a benchmark model and then periodically reanalyze the system to generate 

models to compare to the baseline. Changes in the model signify changes in the system, 

which may be caused by damage.

For linear systems, the first step o f establishing a benchmark model typically 

involves characterizing the system with eigenvalues and eigenvectors (natural 

frequencies and mode shapes) by utilizing a modal parameter extraction method [4], 

Since the concept of natural frequencies and mode shapes only apply to linear systems, or 

nonlinear systems linearized about an operating point, this approach is not suitable for a 

system with hard nonlinearities.

1
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The nonlinear identification will be accomplished using a state-dependent ARX 

model. The state-dependent coefficients will be used for detecting damage. This will be 

accomplished by establishing the bounds o f the coefficients for the undamaged system. 

Identifications performed at later periods will then be check against the established 

bounds to check for changes in the system.

2
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Chapter 2 - Nonlinear System Identification Research

This chapter summarizes past research on nonlinear system identification and 

outlines the approach proposed within this dissertation.

2.1 Past Research

There are applicable frequency-domain methods for the identification o f nonlinear 

systems. One such method is a reverse identification technique by Bendat and is covered 

in Reference [5]. This method changes Single-Input/Single-Output (SI/SO) nonlinear 

models into a reverse Multiple-Input/Single-Output (MI/SO) linear models. The Duffing 

SI/SO nonlinear system (Equation 2-1) can be used as a simple example o f this method

By reversing the defined input and output, as well as treating the linear and cubic terms 

as separate inputs, Equation 2-1 can be represented as a two-input/single-output system 

(Figure 2-1).

Figure 2-1. Duffing Reverse Two-Input/Single-Output Linear System

Bendat covers methods of separating the linear and nonlinear contributions from data and 

then generating the appropriate frequency response functions for reverse systems o f the

my(t)+ cy(t)+ ky(t)+ k3y 3 (t) = u(t)

u(t) -  physical excitation 
y(l)  = physical response.

2-1

A, ( / ) &  A 2( / ) are frequency response functions

3
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form in Figure 2-1. This method has limitations when applying it to SI/MO systems and 

to systems in which no prior knowledge exists. This is due to the method for multiple 

degree-of-freedom systems being a gray-box method, which is a system o f equations 

derived based on physical interpretation. Frequency response functions are then 

determined using reverse identification to complete the model.

Feldman developed a method for nonlinear system identification using the unique 

properties o f the Flilbert transform [6, 7]. The Hilbert transform of a real-valued function 

y(t) is defined by

In simple terms, the Hilbert transform of a signal is that signal shifted in phase by -te/2. It 

can be calculated by taking the Fourier transform of a signal, shifting the phase by -ti/2 

and then calculating the inverse Fourier transform. By using the original and the 

transformed signal, the instantaneous phase (0), damped natural frequency (co) and 

amplitude (T) can be calculated using

2-2

7t t  — T

2-3

co ( t )  =  (f){ t)-  and
2-4

2-5

Feldman shows methods of calculating the natural frequency and damping characteristics

of an oscillatory system for both free and forced vibration.

4
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To be able to apply Feldman’s method to a multiple degree-of-freedom system, 

one must utilize the fact that when a frequency of excitation is close to one o f the 

undamped natural frequencies, the mode shape is identical to the normal mode shape of 

the system. Therefore, the vibration o f the system depends only on the parameters of this 

particular mode. This may not be possible for some systems and might mask the 

characteristic o f the nonlinearities. Other observations obtained through application of 

this method show it works well for frequencies but not for damping.

Huang has a patented method for reducing a nonlinear/non-stationary time series 

into Intrinsic Mode Functions (IMFs), known as Empirical Mode Decomposition (EMD) 

[8]. It employs a series o f de-trending passes, known as sifting, to produce the IMFs. 

Each IMF oscillates about a mean of zero with as many maximum and minimums as zero 

crossings. This causes each IMF to be “Hilbert friendly” and it makes no assumptions of 

the waveform. Huang then applies the Hilbert Transform to the IMFs and calculates the 

instantaneous frequencies as a function o f time. This data is then displayed in a spectra 

graph format.

The sifting process is an effective filter with interesting characteristics. This is 

demonstrated by its ability to decompose the signal (Figure 2-2) generated by summing 

the following three waveforms:

Wave 1: Sine, amplitude o f 2 and frequency of 0.16 Hz

Wave 2: Chirp, beginning at 0.1 Hz and ending at 1 Hz over 10 seconds

Wave 3: Triangular, amplitude o f 0.25 and frequency of 25 Hz

5
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-2 
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Figure 2-2. Example Case for Huang’s Sifting Method

The summation of the three waveforms shown in Figure 2-2 was sifted with the algorithm 

described by Huang. Figure 2-3 shows the results from the sifting process. It can be seen 

that the method extracted the three original waveforms.

IMF 2
2 

1 

0 
-1

-2
0 1 2 3 4 5 6 7 8 9  10

IMF 3
3

2

1

0
-1

'2 0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Figure 2-3. IMFs Identified using EMD from [8] 
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Although this method does not attempt to construct a model, it was hoped that it could be 

applied as a filter for Feldman’s method to single out a modes’s contribution. Flowever, 

the de-trending process generates misleading results for some systems, which produces 

erroneous identification. For instance, one IMF will transition between two different 

phenomena confounding the data beyond usefulness.

There is another class of nonlinear identification methods that use stochastic 

models extracted from time-domain data. These methods are based on different forms of 

Auto-Regressive (AR) models and generate state-dependent coefficients,

p Q 2-6
y(n) = £  a(i, y(n - 1  ))y(n -  i) + ^  b(j, y(n - 1 ))u(n -  j )  + e(n) .

i=1 j = 0

Young [9] has developed a two-step process for generating this form of a model. 

The first involves performing Recursive Least Squares (RLS) to identify the coefficients 

o f the model as a function o f time, assuming the statistical properties o f the signal are 

changing slow in relation to the rates the states are changing. By knowing the states and 

coefficients as a function o f time, the relationship between the coefficients and the states 

can be estimated. By curve fitting this data, equations of the coefficients as a function of 

the states can be generated. Other researches use Young’s process as the genesis of 

methods using state-dependent models, Toivonen [10] applies velocity-based 

linearization to form discrete state-space models that are state-dependent. Akesson’s [11] 

work is a continuation o f the work performed by Toivonen, with more details on using 

neural networks to find the state-dependent parameters.

Techniques have been developed that calculate the state-dependent coefficients 

directly from the time-domain data. This is accomplished by expanding the regression 

vector coefficients using a general form of an orthogonal basis function,

7
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v 2-7
a(i,y(n - l ) )  = X a(i, k)yk (y(n - 1)) and

k  = 0

b(j, y(n  - 1)) = £  P(j, k ) /k {y(n - 1)) ,
k =0

where a  and f t  are scalar weighting coefficients, and y  is a basis function. The error is 

then minimized by adjusting the coefficients of the basis vectors. For instance, Ljung 

[12] optimizes the weighting, dilation and phase o f the basis function to minimize the 

error. Care must be taken during the optimization to ensure the solution is not a local 

minima.

Peng [13, 14] utilizes a neural network optimization method to find the centers, 

scale factors and coefficients o f Radial-Basis Functions (RBF) to form the state- 

dependent coefficients of an ARX model. This method is applicable to smooth nonlinear 

systems.

Polynomial forms of the state-dependent coefficient are applicable to characterize 

smooth global nonlinear properties; similar to using RBF to expand the state-dependent 

coefficients. Billings [15] breaks the stochastic model down to multiple submodels; 

polynomial, wavelet and noise models. The polynomial model represents global 

properties, where as local properties are characterized with the wavelet representation.

Hu [16] also uses neural networks to find coefficients to state-dependent models. 

Hu’s concern with neural networks not being user-friendly or easy-to-use for controller 

design and fault diagnosis, led him to a model consisting of two parts. The two parts are 

a macro-part, which is constructed with application specific knowledge and a kernel part, 

which uses nonlinear non-parametric models such as neural or neurofuzzy networks. It is 

not clear to this author how this addresses ease-of-use.

8
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Gomez [17] presents a robust method o f finding state-dependent coefficients of 

the form in Equations 2-7 and 2-8 using least squares that is not susceptible to local 

minima. However, consistency o f estimates can be guaranteed only for noise free cases.

2.2 Proposed Approach

O f the methods reviewed in Section 2.1, the state-dependent ARX methods [9, 11 

to 17] show the most promise in meeting the said objective. The associated pitfalls and 

overhead of performing identifications of multiple models removes Young [9], Billings 

[15] and Hu [16] from the list of desirable approaches. Being able to identify 

discontinuities such as dead-bands generated by cracks opening and closing excludes the 

methods only applicable to smooth nonlinear systems [13, 14]. The user-friendly and 

ease-of-use issues of neural networks addressed by Hu [16] eliminates [11, 12] from 

attractive approaches as well. Gomez’s [17] technique lacks the ability to address 

corrupted signals, which excludes it as a possible approach. Therefore, a unique method 

will be developed to meet the objectives of this research.

The first step to meeting the objective will begin with the development of a 

process for generating SI/SO ARX models of nonlinear systems, including hard nonlinear 

characteristics. The nonlinear characteristics of the system will be captured by the 

coefficients being functions o f the states. Noise will be applied to both the input and 

output signals. Once this method is developed, it will be expanded to SI/MO systems. 

The accuracy and sensitivity of the method will be evaluated to demonstrate its 

applicability to nonlinear damage detection.

9
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Chapter 3 - Review of Linear Time-Invariant ARX Model System 
Identification

For familiarization, a brief description of the use of ARX models for linear time- 

invariant system identification follows, as well as an example. For a more thorough 

explanation, see Ljung [12] and Astrom [18].

The general form of an ARX model is

p Q 3_i
y{n) = 's£ j a{i)y{n- / ) +  “  j )+  e(n) •

/=! . / = o

The first summation represents the autoregressive portion of the model and the second 

the exogenous input. The output {y(l), y(2),...,y(N)} resulting from the input {u(l), 

u(2), ...,u(N)} are discrete sampled data at evenly spaced intervals. The term e represents 

unknown white noise or error. The schematic representation is shown in Figure 3-1.

u unknownw system
y

-►

Figure 3-1. SI/SO Unknown System with Noise

The unknown parameters of Equation 3-1 can be rewritten as

0 = [at ... aP b0 ... bQ] . 

Organizing the output and input arrays

• • •  y ( k ~ p )  uik ) • • •  uik ~Q)\

and

3-2

3-3

10
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0  =

<pT(n)

1ot {N)

3-4

Equation 3-1 can be rewritten as

y(n) = cp{n)9 + e(n) . 3-5

To estimate the coefficients, the equation error is minimized in the least-squares sense 

[19] using the function defined as

3-6

>7=1

This is accomplished by following these steps (assuming [<D>r <E>] is nonsingular):

O 0  = y .

O r0 0  = O ry ,

3-7

3-8

[o 7 <t>]̂  [<f>r ®](9 = [<f>r o ]^  0 Ty  and 3-9

0  = [ o r o ]“10 Ty . 3-10

The effectiveness o f this method will be demonstrated using the two Degree-of-Freedom 

(DOF) system shown in Figure 3-2 and the parameters listed in Table 3-1. Applying the 

force shown in Table 3-2 to mass 1, one obtains the displacement of mass 2 shown in 

Figure 3-3 (plot o f applied force is also shown in figure for reference).

i-Or
m,

K'
K H

rm

Uj (force on mass one)

Figure 3-2. Linear Two DOF Spring-Mass-Damper System

11
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Table 3-1. Linear Two DOF Spring-Mass-Damper System Parameters

Parameter Value

mi 1
ki 40
Cl 0.6
m2 1
k2 100

C2 5

Table 3-2. Force Applied to Linear Two DOF Spring-Mass-Damper

Time Force
0 1

0.2 1
0.21 0
0.5 0

0.51 1
0.6 1

0.61 0
1 0

1 -
o  0 .8  -

J  0.6 -

f  0.4 - 

y  0.2 -O

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.03

.0 01  1 1 1 1 1 1 1 1 1---------
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

Figure 3-3. Linear Two DOF Example: Applied Force and Response

12
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Using the data in Figure 3-3 (sampled with a delta-time of 0.01) in the ARX 

method outlined above, with model order consistent with P=4 and Q=3 in Equation 3-1, 

the coefficients in Table 3-3 were obtained. The MATLAB [20] m-file used to perform 

this is listed in Appendix A. To demonstrate the validity o f the identified model, the 

response of mass 2 was synthesized. It can be seen in Figure 3-4 that the synthesized 

response matches the original response quite well.

Table 3-3. ARX Coefficients for Linear Two DOF Spring-Mass-Damper System

Coefficients Value

ai 3.85510

a2 -5.59307-

a3 3.62042

a4 -0.88249

bo 1.6414E-08

bi 8.5198E-07

b2 2.8018E-06

b3 -2.4013E-06

0.025
—  Original 
- - -  Synthesized

0.02

0.015
rst
"c0>£aso
CIS

0.01

Q_
to
b

0.005

-0.005
0.2 0.3 0.4 0.5 0.6 0.7

Time
0.9

Figure 3-4. Linear Two DOF Example: Synthesized Response Compared to Original
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To further illustrate the validity of the identified model, the response of the 

original and identified system was generated using a different input force than that used 

for performing the identification. For this, a sequence o f random numbers between -0.5 

and 0.5 generated at a time interval of 0.01 was used for the input force. Figure 3-5 

shows a comparison of the results and again the identified system matches the original 

quite well.

x 10'3

2.5
  Original System
—  Identified System

Cl

o

0.5

- 0.5
0.2  0.3  0.4  0.5  0.6  0.7

Time
0.9

Figure 3-5. Linear Two DOF Example: Response of Original and Identified System to
Different Forcing Function
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Chapter 4 - Identification Method for Time-Invariant Nonlinear 
Systems

The utility and simplicity of system identification of a time-invariant linear 

system using the ARX approach was demonstrated in Chapter 3. Using solution tools 

such as least-squares contributes to the simplicity. Researchers have expanded this type 

of identification to time-variant systems by making the coefficients functions o f time [2 1 , 

22, 23 & 24], while retaining the structure of the problem to use least-squares to find the 

coefficients. Other similar methods use solutions such as Newton-Raphson, which suffer 

from the pitfalls of local minima.

Using this type of methodology, except making the coefficients a function o f the 

system’s state, will be developed in the following chapters.

4.1 Nonlinear Single-Input/Single-Output

If one had insight into a system to the level o f knowing how its characteristics 

varied with its states, the task of identifying it would be straightforward. For instance, if 

it were known that a Single-DOF (SDOF) system had a spring that behaved like a third- 

order polynomial, it would be included in the setup o f the formulation. Unfortunately, 

one rarely has this luxury. So a method of forming a general nonlinear system is needed. 

Currently a popular way of approaching this is by utilizing basis functions, Zou, et al 

[22]. However, Zou applies this method to time-varying systems. What follows is an 

adaptation o f Zou’s method for time varying systems to systems that have time invariant 

nonlinear characteristics.

15
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The ARX model modified to have coefficients as a function of the results from 

the previous time step is

p o 4 -1
y{n) = Y,a{i ,y{n - 1 ))y(n -  i ) + Y j b(j ,y(n - 1 ))u(n -  j )+  e(n) .

i=1 7=0

Expanding the coefficient using a basis set results in

v 4 _ 2

a(i, y(n - 1)) = ^  a (f> k )̂ k (y(n ~ 0) and
Ar = 0

b{ j ,y (n - l ) ) =  Y j P i j , k)yk( y ( n - 1)),
k =0

where a  and /? are scalar weighting coefficients, y  is a basis function, and e is error due to 

white noise. Figure 4-1 through Figure 4-3 show examples o f basis sets for use in the 

Equations 4-2 and 4-3. The first two basis sets (Walsh functions and Block pulse) are well 

suited for modeling systems with hard nonlinear characteristics, where as Chebyshev 

Polynomials are more appropriate for smooth nonlinear systems. Chebyshev Polynomials 

have also proved useful for systems with excessive noise corruption. The MATLAB m- 

files used to generate the three basis sets are listed in Appendix B. Prior to use in 

Equations 4-2 and 4-3, the basis need to be mapped to the range of y  in the data set being 

used ( 0  becomes the minimum and 1  the maximum value o f y).

16
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Figure 4-1. First Eight Walsh Functions
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Figure 4-2. Series of Eight Block Pulses

17

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

3 0.2 0.4 0.6 0..8

________— ---------------

3 0.2 0,4 0..6 0..8

- ______ .......  — - -

3 0.2 0.4 0.6 0.8

3 0.2 0.4 0.6 0.8

\ ------
\

3 0.2 0.4 0..6 0.8

0.2 0.4 0.6 O.S

Figure 4-3. First Eight Chebyshev Polynomials of the First Kind

Substituting Equations 4-2 and 4-3 into Equation Error! Reference source not found, 

results in

p v o  v

y(n) =  Z Z * V * (y(n - ]M n -  0  +  Z  Z k )yk - i ) M » -  J ) + e(n) ■
j=0k=0i=\ k=0

4-4

Equation 4-4 can be simplified by defining two variable definitions

y k( n - i )  = yk(y (n - 1  ))y(n- i) and

uk (« -  J ) = r k (.y(n - 1)M» ~ J ) •

Using the above variables transforms Equation 4-4 to

p v O V

y(n) = Z  Z  a (t’ k )yk (n -  0 + Z  Z  / * ( / >  ( «  -  2 ) + e ( « )  •
7=0 £= 0(=1 *=0

Writing out the product o f the basis with the input and output arrays yields

4-5

4-6

18
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M  = b o ( n - 1) ••• yv(n ~l)  J o ( n - 2 )  ... jv(n-p) 4 ' 7
u0 (n) ... uv (n - l )  «0 ( n - 2) ... uv{ n - Q %

where y k( n - i )  = yk( y { n - \ ) ) y ( n - i )

=  h ( > ’( o ) ) > ' 0 - 0  r k{y(]M 2 ->)  • • •

uk (n -  J') = Yk ( f ( n -  l ) M n -  j )

=  l / * W 0 ) M w - y )  r M l ))y(2 ~ J )  • • •

and n = 1 to /V. The coefficients in Equation 4-6 can be arranged in a vector as

T = [o (l,0 )  ... e ( U ')  a(2,0) ... a(P,V)  4-8

/?(0,0) ... 0(0 ,V) 0(1,0) ... y S f e . r f -  ■

Using the definitions shown in Equations 4-7 and 4-8 with Equation 4-6, one obtains a 

similar expression as shown in Equation 3-5,

y  = M ¥  + e . 4-9

As with Equation 3-5, if  M TM  is nonsingular, the coefficients can be found using

Equation 3-10. If each o f the columns of M  are not linear independent and therefore

M t M  is singular, a method must be applied to remove the columns o f redundant 

information. In Zou’s time-variant application, he compares column by column to check 

that each one is linear independent. A more efficient method of separating the linear 

independent vectors is by using QR factorization [19].

Once the coefficients are found for Equation 4-9, it is possible to construct the 

state-dependent coefficients for the ARX model (Equation Error! Reference source not 

found.). This can be accomplished by using Equations 4-2 and 4-3 for a and b, 

respectively. Due to the model only being valid for the range of y  that was used in the
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identification process, it should not be used to predict behavior outside that range. In the 

event y does go slightly outside the limits, the coefficients should not be extrapolated, but 

held at the value at the limit.

Using the above outlined method, an algorithm can be written to generate a state- 

dependent Nonlinear ARX (NL-ARX) model for SI/SO systems. The following outlines 

the steps for such an algorithm. Unless otherwise noted, the referenced MATLAB [20] 

m-files are listed in Appendix C. The master file that follows the below steps is 

NLARX.m.

1. Choose model parameters: model order (P & Q), basis set(s) to be used, 

and number of vectors to be used in basis set (walsh.m cheby.m and/or 

block.m from Appendix B)

2 . Constructyk and vectors (pool.m)

3. Find the linear independent vectors in jy  and Wk (linindi.m)

4. Construct M  matrix from the linear independentyk and tit vectors

5. Solve for the a  and fi  coefficients using Equation 3-10

6 . Construct the state-dependent NL-ARX coefficients a and b (assemble.m)

7. Truncate the coefficients above and below range of identification (trim.m)

8 . Reconstruct y to verify model (timeh.m)

4.1.1 Example Nonlinear Single-Input/Single-Output System

A SDOF system with a hard nonlinearity was used to demonstrate this method 

(Figure 4-4). The parameters used for this system are listed in Table 4-1. The forcing 

function was a summation of two sine waves

20
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u = sin(T0 .1 -f) + sin(3.2-f) 4-10

and is shown in Figure 4-5 along with the response of the mass.

I - V H

—̂
u(force on mass)

Figure 4-4. SDOF Nonlinear System with a Hard Stop

Table 4-1. SDOF Nonlinear System Parameters

Parameter Value

m 1

k 2 0

c 0.5
khs (y < 0 ) 2 0 0 0

2

0

•2
0 2 3 4 5 6 7 8 9 10

0.2

0.15"E05
E 0.1Q)

0.05LO
Q

-0.05

T im e

Figure 4-5. Nonlinear SDOF Example: Applied Force and Response

21

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

The NL-ARX method outlined above was applied to the data in Figure 4-5 

(sampled with a delta-time of 0.01). The parameters used in the identification (Appendix 

C, NLARX.m) are listed in Table 4-2 and the resulting coefficients are plotted in Figure 

4-6 and Figure 4-7 as a function of y. Walsh functions were chosen for the basis set due 

to their ability to duplicate discontinuities, which is demonstrated in Figure 4-6 and 

Figure 4-7 by the discontinuity in the coefficients at zero displacement resulting from the 

hard stop. The optimum number of Walsh functions was found by performing a series of 

identifications with a range of values of Walsh functions (e.g., 1 to 16). The Root-Sum- 

Square-Error (RSSE) of the synthesized output compared to the original output was 

calculated for each identified model. The results from the case with the lowest RSSE 

were then compared visually with the original output to confirm the validity of the fit.

Table 4-2. NL-ARX Parameters used in SDOF Nonlinear System Identification

Parameter Value

P 2
Q 1

Number of 
Walsh Functions 14

Length of 
Block Vectors 1 0 0 0

22
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-0.9935

-0.994

-0.9945

-0.995

-0.9955

-0.05 0.05 0.15 0.2

2 1   -   ,   ....................

1.95 - 

„  1 . 9 -  

V  1.85 -

1 . 8 -  ----------------------

1 7 5  I-------------------- i---------------------1----------  1-------------------- 1--------------------
-0.05 0 0.05 0.1 0.15 0.2

Displacem ent o f y

Figure 4-6. Nonlinear SDOF Example: NL-ARX “a ” Coefficients as a Function of
Displacement

x 10'4
1.6

1.5

1.4

1.3

1.2

1.1  L -  

-0.05 0.10 0.05 0.15 0.2

x 10'5
1

■2

■3
e

-4

■5

-6 —  

-0.05 0.05 0.10 0.15 0.2
D isplacem ent of y

Figure 4-7. Nonlinear SDOF Example: NL-ARX “b ” Coefficients as a Function of
Displacement
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As in Chapter 3, to demonstrate the validity o f the identified model, the response 

was synthesized. It can be seen in Figure 4-8 that the synthesized response matches the 

original response very well.

0.1B
Original
S ynthesized

_Q  Q 2  ___________I___________i___________ i__________ i___________ i___________ i___________i___________ i___________i___________

0 1  2 3 4 5 6 7 8 9  10
Time

Figure 4-8. Nonlinear SDOF Example: Synthesized Response Compared to Original

As before, both the original system and the model constructed from the data were 

driven by an input other than the one used for the identification process, see Figure 4-9. 

These two outputs were than compared to further demonstrate the accuracy of the 

identified model. Again the match, shown in Figure 4-10, is close.
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o

I  -0.5 -

_1 U  i Li Li i i i i i____
0 1 2 3 4 5 6 7 8 9  10

0.06

0.02

C l

- 0.02

Time

Figure 4-9. Nonlinear SDOF Example: New Forcing Function and Response of Original
System

0.05
—  Original 
- - -  Synthesized

0.04

0.03

ca>
8 0.0203
Q _
CO

C l

0.01

- 0.01

Time

Figure 4-10. Nonlinear SDOF Example: Response o f  Original and Identified System to
Different Forcing Function

The accuracy of the identification process can be greatly improved if data at a 

higher sampling rate are used. This will be demonstrated by repeating the previous

25
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example with a delta-time of 0.001 (the previous example used 0.01). The identification 

results in an even closer fit, which is nearly indistinguishable from the original system, 

shown in Figure 4-11.

0.16
  Original
—  Synthesized0.14

0.12

|  0.08 
CD

|  0.06 
o

0.04

0.02

- 0.02
3.50.5 2.5

Time
4.5

Figure 4-11. Nonlinear SDOF Example: Identification of System with 0.001 Sampling
Period

The exercise o f applying a different input than was used for the original 

identification to this system was repeated with the parameters identified with the smaller 

sampling period. This yielded much closer results as well, shown in Figure 4-12.
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0.05
  Original
—  Synthesized

0.04

0.03

C

2 0.02to
O .V>Q

0.01

- 0.01
0.5 2.5

Time
3.5 4.5

Figure 4-12. Nonlinear SDOF Example: Response of Original and Identified System to 
Different Forcing Function with 0.001 sampling period

The above exercise demonstrated how the accuracy o f the identified model can be 

improved by using a smaller time-step. For the approximate eight and one-half cycles 

in Figure 4-12, the smaller time step equates to nearly 600 data samples in each 

oscillation. Although this level is achievable with today’s data acquisition systems, it is 

excessive, so the remainder o f the identification performed will be closer to 1 0 0  data 

samples in each oscillation. If increased accuracy is required when applying the methods 

addressed, a smaller time step is an option.

4.2 Nonlinear Single-Input/Single-Output with Corrupted Data

Up to this point only idealized input/output signals with no noise have been 

addressed, which is rarely the case in practice. Due to many different reasons, 

measurements are often corrupted. The method developed up to this point does not 

perform well when uncorrelated noise is superposed on the input and output signals. To
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illustrate this, simulated noise was used to corrupt the signals shown in Figure 4-5. 

Figure 4-13 schematically shows how this was performed. The noise is represented by 77, 

and the subscript m represents the measured signal. The noise was constructed using a 

random signal with maximum and minimum values chosen to result in an 80 dB Signal- 

to-Noise Ratio (SNR), as calculated by [25]

Separate uncorrelated noise models were constructed for the input and output.

A U^  m Ay,n

M r )

t  > unknown t ,W
U system w

y

Figure 4-13. Illustration of Measurement Noise

The same parameters listed in Table 4-2 were used with the NL-ARX method 

developed and data corrupted as explained above. The identified parameters resulted in 

the synthesized output shown in Figure 4-14. Although the method successfully 

identified the higher stiffness for displacements less than zero, the general response does 

not match the data from the original system.
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0.16
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—  S ynthesized0.14

0.12

0.03

S’ 0 06
b

0.04

0.02

- 0.02

Time

Figure 4-14. Nonlinear SDOF Example with Noise: Synthesized Response Compared to
Original using NL-ARX

To reduce this effect, the ability to accommodate data with noise was needed. 

Therefore, an AR model of the noise was added to the algorithm. The identified noise

model was then used to filter the input and output signals. This approach is referred to as

Generalized Least Squares (GLS) [12, 26].

After the coefficients are found for Equation 4-9 using a least-squares method, the 

residuals can be found by solving

e = y - M ¥ .  4-12

An AR model of the error can be constructed with the residuals,

R 4-13
e{n)='^c(l)e(n — l) .

/=i
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The coefficients for Equation 4-13 can be found using the method outlined in 

Equations 3-6 to 3-10. The coefficients found for Equation 4-13 can now be used as a 

filter for the input and output signals as

The filtering influence o f Equation 4-14 removes the noise content; however, it 

also linearly scales the data. The application o f GLS in [26] is to linear systems, so this 

weighting phenomenon does not adversely affect the identification o f the system. This is 

not the case when applying it to nonlinear systems. Therefore, a scale factor has to be 

applied to the filtered data. The scale factor is calculated by dividing the standard 

deviation (a) of the original output data by that o f the filtered,

Multiplying both the filtered input and output from Equation 4-14 by this scalar value 

restores the data to its original range,

By recalculating the coefficients of Equation 4-9 using the filtered results from 

Equation 4-16, the accuracy of the fit is increased. Repeating the process until the 

solution converges further increases the accuracy of the fit. Convergence has been 

achieved when the results from the two most recent iterations generate the same 

residuals. Likeness of two residuals is calculated using

R

y j  (n ) = Y j c (I) y (n ~ l ) and
i=i

R 4-14

4-15

y f  = scale*yf and 4-16

u f = scale*uf .
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test ■
T Te e „ - e nero o o

4 -1 7

eTeO 0

where the subscript “o” represents the residuals from the previous iteration step. In 

practice, the best results have been achieved by setting a tolerance on Equation 4-17 of 

less than l.OxlO”9.

In addition to the identified AR filter, it is also beneficial to apply a pre-filter to 

both signals. The simple discrete filter

x f  =(x"+,+ x ;) /2  4-18

has proven to be adequate in reducing the noise without masking the systems 

characteristics. The frequency response of the pre-filter is shown in Figure 4-15 for a 

sampling frequency o f 100 Hz.

<D

2 0 0

if)
CD 1 0 0
CD

O ?
0 )

Q 0

CD
ZJ)
c

< - 1 0 0

- 2 0 0

1 0

1 0

1
1 0 '

■2
1 0 '

,0 ,2
101 0 1 0 j

10

Frequency (Hz)
1 0

Figure 4-15. Bode Plot of Pre-Filter (sample frequency of 100 Hz)
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The NL-ARX method outlined in Section 4.1 can be updated with both the pre

filter and GLS routine to generate a state-dependent NL-ARX-GLS model for SI/SO 

systems with corrupted data. The following outlines the steps for a NL-ARX-GLS 

algorithm. The main MATLAB routine (NLARXGLS.m) is contained in Appendix D.

1. Pre-filter the input and output signals with Equation 4-18

2. Choose model parameters: model order (P, Q & R), basis set(s) to be used, 

and number of vectors to be used in basis (walsh.m cheby.m and/or 

block.m from Appendix B)

3. Construct y \  and Wk vectors with the filtered data (pool.m)

4. Find the linear independent vectors in jk  and ty (linindi.m)

5. Construct M  matrix from the linear independent y k and «k vectors

6 . Solve for the a  and /? coefficients using Equation 3-10

7. Find the residuals using Equation 4-12

8 . Filter the input and output using GLS (gls.m, Appendix D)

9. Using Equation 4-17, check for convergence

10. If the algorithm has not converged and number of iterations is less than the 

maximum allowed, go to Step 3 and use the filtered data from Step 8  to 

create the vector pool, otherwise go to Step 11

11. Construct the state-dependent NL-ARX coefficients a and b (assemble.m)

12. Truncate the coefficients above and below range of identification (trim.m)

13. Reconstruct y  to verify model (timeh.m)
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4.2.1 Example Nonlinear Single-Input/Single-Output with Corrupted Data

To demonstrate the ability o f the NL-ARX-GLS method, it was applied to the 

corrupt data from Section 4.2. The parameters used for the identification are listed in 

Table 4-3. Chebyshev Polynomials were used instead of Walsh functions because 

identifications performed during this research revealed they often work well with noisy 

data.

Table 4-3. NL-ARX-GLS Parameters used in SDOF Nonlinear System Identification
with 80 dB Noise on Input and Output

Parameter Value
P 2

Q 1

R 8

Number of 
Chebyshev Polynomials 19

Length of 
Block Vectors 1 0 0 0

GLS Tolerance 1.0E-09
Maximum Iterations 1 0 0

As with previous examples, to demonstrate the validity o f the identified model, 

the response was synthesized. It can be seen in Figure 4-16 that the synthesized response 

does not match as close as the clean data (Figure 4-8), but much better than the attempt of 

matching corrupted data with the NL-ARX method (Figure 4-14).
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Figure 4-16. Nonlinear SDOF Example with Noise: Synthesized Response Compared to
Original using NL-ARX-GLS

4.3 Nonlinear Single-Input/Multiple-Output with Corrupted Data

Unlike linear systems, some nonlinear systems dictate a level of spatial resolution 

o f outputs to adequately perform system identification. For instance, if  a multiple degree 

of freedom system contains a softening spring, a single input and output would not 

provide enough information to accurately identify the nonlinear characteristics; however, 

a measurement of both sides of the spring would. For this reason, a multiple output 

method more accurately captures the characteristic of nonlinear systems.

The method developed for the identification of SI/SO nonlinear systems with 

input/output signals corrupted with noise (NL-ARX-GLS) was expanded to SI/MO 

systems. This was accomplished by using Equation Error! Reference source not 

found, for each output and adding to it terms to represent nonlinear influences from other 

outputs. Coefficients, which are a function o f the difference between outputs, are applied
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to the quantity resulting from differencing the output of interest with another output. It is 

recognized that this will not represent all possible nonlinear combinations, but since this 

research is focused on mechanical systems, it should suffice. For a more general form, 

the influence of each output as well as products can be added to the model.

With the above-mentioned conditions, the SI/SO model shown in Equation 

Error! Reference source not found, is transformed to

4-19
y h in)=X a(z’’ yh (n -  Ok («- 0+Z  0.A y h («- 0M« -./)

;=1 y=0

z1=1 Y , a { l * P  + i, y h {n -  i) - y r {n~  i ) \ y h (n -  0  ~ y r{n ~  0 )
/=1

+ e(n),

, \ i if  I < i
where r = <

z + 1  if  / > i

The implementation of Equation 4-19 requires minor changes to the algorithm developed 

in Section 4.2. The algorithm flow remains generally the same; however, some o f the 

routines do require modification. Table 4-4 shows a list of the routines for the SI/SO 

application that require modifications. The updated routines can be found in 

Appendix E.

Table 4-4. Routines Requiring Modification for SI/MO Identification

SI/SO Routine Name SI/MO Routine Name

nlarxgls mnlarxgls
pool mpool
gls mgls

assemble massemble
trim mtrim

timeh mtimeh
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Routine nlarxgls.m had to be modified to accommodate a reference channel, the 

channel o f interest, as well as produce vectors o f the reference channel differenced with 

the balance o f the channels. The portion of the routine that generates the basis was also 

changed, to allow the different outputs to have different basis sets. Due to it being the 

main routine, the routines being called had to be updated from SI/SO to the SI/MO 

routine names.

The vector pool generation routine was modified to produce mpool.m by adding 

another dimension to the input and output matrices to accommodate multiple outputs. 

The order o f the output and input fit, P and Q, were also vectorized to allow for different 

order models. The routines mgls.m, massemble.m, mtrim.m, and mtimeh.m are very 

similar to their SI/SO counterparts with an additional dimension to their outputs to 

represent the multiple outputs.

The best results have been achieved with the outlined algorithm by performing the 

identification on each output individually; using the other outputs measured data during 

the identification. The process is similar to the method used to find the optimum number 

of basis functions for SI/SO systems, with the number o f basis functions for the output 

being identified, as well as for the coefficients being the variables. The number o f basis 

functions for the input is kept the same as that o f the output of interest.

4.3.1 Example of Nonlinear Single-Input/Multiple-Output System

To demonstrate the SI/MO NL-ARX-GLS identification algorithm, a three-DOF 

system with two nonlinearities was created (Figure 4-17). The two nonlinearities consist 

of a cubic spring (ks) and a hard stop (khs); the values of the parameters are shown in 

Table 4-5. The system was excited with the input
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u = 100*sin(T0.1-if)+100*sin(3.2-)) 4-20

m-m m

u (force on mass one) 

Figure 4-17. MDOF Nonlinear System with Single Input

Table 4-5. MDOF Nonlinear System Parameters

Parameter Value
mi 1
c f 5
ki 10
m2 1
c2 2
k2 1

khs (y2 -  y3 > 0) 2000
m 3 1
C3 4

ky (cubic spring) 10

As with the example in Section 4.2, noise was added to the outputs and the input, all were 

on the order o f 80 dB SNR.

The identification algorithm was first applied to yi with the parameters listed in 

Table 4-6. The first four Chebyshev functions were used for both the basis set for yi and 

yi -  y2. The coefficients for yi -  y3 were assumed to be constant. Figure 4-18 contains 

the results from the identified model. It should be noted that when creating the results
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shown in Figure 4-18, only yi was synthesized, the original values for y2  and y3 were 

used.

Table 4-6. SI/MO NL-ARX-GLS Parameters used to Identify Output 1

Parameter Value
P 2

Q 1

R 8

Number of 
Chebyshev Polynomials in Basis 

for yi
4

Number of 
Chebyshev Polynomials in Basis 

for yi -  y2

4

Coefficients for yi -  y3 Constant N/A
Length of 

Basis Vectors 1 0 0 0

GLS Tolerance 1.0E-09
Maximum Iterations 1 0 0

—  Original 
--- Synthsized

-10

-15

-20

Time

Figure 4-18. SI/MO Example with Noise: Synthesized Results Compared to Original for
yi using the Original y2 and y3 Results
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The identification algorithm was then applied to y2 with the parameters listed in 

Table 4-7. The best model was identified using 14 Block Pulse functions for y2 , four 

Chebyshev Polynomials for y2 -  yi and 13 Block Pulse functions for the -  y3 basis sets. 

Figure 4-19 contains the results from the identified model and as with yi, the results 

shown are for only y2 being synthesized, the original values for yi and y3 were used.

Table 4-7. SI/MO NL-ARX-GLS Parameters used to Identify Output 2

Parameter Value
P 2

Q 1

R 8
Number of 

Block Pulse Functions in Basis 
for y2

14

Number of 
Chebyshev Polynomials in Basis 

for y2-  yi
4

Number of 
Block Pulse Functions in Basis 

for y2 -  y3

13

Length of 
Basis Vectors 1 0 0 0

GLS Tolerance 1.0E-09
Maximum Iterations 1 0 0
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  Original
—  Synthsized

-10

-20

Time

Figure 4-19. SI/MO Example with Noise: Synthesized Results Compared to Original for
y2 using the Original yi and y3 Results

Finally, the identification algorithm was applied to y3 with the parameters listed in 

Table 4-8. The best model was identified using four Chebyshev Polynomials for y3 , four 

Block Pulse Functions for y3 -  yi and 15 Block Pulse functions for the y3 -  j 2 basis sets. 

Figure 4-20 contains the results from the identified model and as with the other two 

outputs, the results shown are for only y3 being synthesized.
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Table 4-8. SI/MO NL-ARX-GLS Parameters used to Identify Output 3

Parameter Value
P 2

Q 1
R 8

Number of 
Chebyshev Polynomials in Basis 

for y3
4

Number of 
Block Pulse Functions in Basis 

fo ry3- y i
4

Number of 
Block Pulse Functions in Basis 

for y3- y 2
15

Length of 
Basis Vectors 1000

GLS Tolerance 1.0E-09
Maximum Iterations 100

3
—  Original 
- - -  Synth s ized

2

1

0

1

-2

•3 10 2 3 4 6 7 108 3
Time

Figure 4-20. SI/MO Example with Noise: Synthesized Results Compared to Original for
y3 using the Original yi and y2 Results
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Figure 4-21 to Figure 4-32 contain plots o f the coefficients found for all three 

outputs. As expected, the coefficients for (Figure 4-21 to Figure 4-23) are much more 

constant than those for the other outputs, due to the forces on jy having linear properties.

Applying the forcing function in Equation 4-20 to the identified model, Equation 

4-19 with the coefficients shown in Figure 4-21 to Figure 4-32, outputs yi y2 and y3 were 

synthesized simultaneously. The synthesized results matched the original quite well, as 

can be seen in Figure 4-33.

2.001

1.999

1.998

1.997
-10-20 -15

-0.996

-0.998

- 1.002
-10-20 -15

D isp lacem en t o f y1

Figure 4-21. SI/MO Example with Noise: yi NL-ARX-GLS “a ” Coefficients for
yi Terms
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-0 .052

-0.054

*2- -0.05G

-0.058

-0.06
■5 •4 •3 ■2 0 2 3 4 5

0 .057

0 .056

_  0 .055  

0 .054

0 .053

0 .052

D isp lacem en t o f (y1 - y2)

Figure 4-22. SI/MO Example with Noise: yi NL-ARX-GLS “a ” Coefficients for
(yi “  yi) Terms

x 1 0 '

-2 - 1 0  1 2  
D isp lacem en t o f (y1 - y3)

Figure 4-23. SI/MO Example with Noise: yi NL-ARX-GLS “a ” Coefficients for
(yi -  y3) Terms
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-0.5

CA
_df'

-20 -15 -10
D isp lacem en t of y1

Figure 4-24. SI/MO Example with Noise: yi NL-ARX-GLS “b ” Coefficients

2.05

05

-10-20 -15 ■5 0 5 10

-0.96

-0.98

- 1.02

-1.04
-10-20 -15

D isp lacem en t o f y2

Figure 4-25. SI/MO Example with Noise: y2 NL-ARX-GLS “a” Coefficients for
y2 Terms
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-0.04

-0.05

©  -0.06 CG

-0.07

-0.08

0.07

^  0.06 03

0.05

0.04

D isp lacem en t o f (y2 -

Figure 4-26. SI/MO Example with Noise: y2 NL-ARX-GLS “a ” Coefficients for
(y2 -  yi) Terms

0.02------- 1------- 1------- 1------- 1------- f------- 1------- 1------- 1------- 1-------

0.01 -   _

tD"  - 0.01 -  

- 0.02  -  

-0.03 -

0 .03

0.02

0.01e-

- 0.01

- 0.02

D isp lacem en t o f (y2 - y3)

Figure 4-27. SI/MO Example with Noise: y2 NL-ARX-GLS “a ” Coefficients for
(y2 ~ y 0  Terms
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x 1 0 '4
6

4

2

0

-10 ■515 0 5 10

x 10'4
4

2

0

■2

■4

-15 -10 -5 0 5 10
D isp lacem en t o f y2

Figure 4-28. SI/MO Example with Noise: y2 NL-ARX-GLS "b ” Coefficients

1.95

03

1.65

•3 •2 01 2 3 4

- 0.8

-0.85

ci- -n qCO
03

-0.95

D isp lacem ent o f y3

Figure 4-29. SI/MO Example with Noise: y3 NL-ARX-GLS “a” Coefficients for
y3 Terms
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-10 -5 0 5 10 15 20
D isp lacem en t o f (y3 -

Figure 4-30. SI/MO Example with Noise: y3 NL-ARX-GLS “a ” Coefficients for
(y3 - y i )  Terms

0.02

0.01

ld
COTO

- 0.01

- 0.02
-10

0.02

0.01

COTO
- 0.01

- 0.02
-10

D isp lacem en t o f (y3 - y2)

Figure 4-31. SI/MO Example with Noise: y3 NL-ARX-GLS “a ” Coefficients for
(y3 - y 2) Terms
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x 10'3
0

-0 .5

1.5
■3 ■2 1 0 1 2 3 4

1.5

0 .5

0
■3 •2 1 0 2 3 4

D isp lacem ent of y3

Figure 4-32. SI/MO Example with Noise: y3 NL-ARX-GLS “b ” Coefficients

10
—  O riginal 
- - -  S yn th s ize d0
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1 1 1
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i
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Figure 4-33. SI/MO Example with Noise: Full Synthesized Response Compared to
Original using NL-ARX-GLS
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To demonstrate the validity o f the identified model, both the original system and 

the model constructed from the data were driven by an input other than the one used for 

the identification process, see Figure 4-34. Comparison of these results, shown in Figure

4-35, shows the accuracy of the identified model.

® 5u

100

CDao
L i_

3
if)(U
CD

-100

Time

Figure 4-34. SI/MO Example with Noise: Measured and Applied Force to Identified
Model
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O riginal 
S yn ths ized

..........y?v___-|

i I I i i
4 5 6

Tim e
10

Figure 4-35. SI/MO Example with Noise: Response of Original and Identified System to
Different Forcing Function

50

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Chapter 5 - Application of NL-ARX-GLS Algorithm to Damage
Detection

The ability of the developed SI/MO NL-ARX-GLS method to create accurate 

nonlinear models o f systems has been shown. To complete the goal of this research, it 

was necessary to apply the method to damage detection of nonlinear systems.

Damage detection and isolation methods for nonlinear systems, such as that 

developed by Zhang [27], rely on the system being represented by differential-algebraic 

equations. However, state-dependent coefficients representing hard nonlinearities are not 

differential. Therefore, a novel comparison approach was developed.

The approach compares the coefficients of the undamaged model to those of 

models computed at later inspection times. Since variations of the coefficients occur 

even for the same system, a stochastic approach was taken. This involved performing 

multiple identifications on the undamaged model at different time windows using the 

same input and output orders. The mean and standard deviation o f each coefficient as a 

function of its state define the undamaged model coefficient bounds.

Multiple identifications were then performed later at the inspection time. Mean 

values for the coefficients were calculated and compared to the statistical bounds o f the 

undamaged model. Coefficients that are outside the bounds indicate areas o f possible 

damage, the larger the deviation, the greater the possibility o f damage. Due to the 

coefficients being a function of the system states, not only is the damaged output 

identified, but also the range o f operation where the suspect damage occurs is predicted.
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5.1.1 Example Nonlinear Single-Input/Multiple-Output Damage Detection

To demonstrate the damage detection capability, data from a series of tests 

performed on an eight degree-of-freedom system at the Los Alamos National Laboratory 

in New Mexico were used [28]. Digital data from the tests were obtained from [29].

The system was comprised o f eight translating masses connected by springs, see 

Figure 5-1. Each mass was an aluminum disc with a Teflon lined center hole, with the 

mass attached to shaker having the mass of 559.3 grams and the remaining seven 419.4 

grams. The masses slid on a highly polished steel rod that was lubricated to minimize 

friction. The masses were fastened together with coil springs with a stiffness of 56.7 

kN/m. The system damping was low and caused primarily by Coulomb friction.

The excitation force was applied to mi and the acceleration responses o f all 

masses were recorded during damage identification tests. The excitation during the 

testing was random. The specifications for the data acquisition are summarized in Table

5-1.

Table 5-1. Data Recording Parameters used for Eight-DOF System [28]

Time step 0.001953 sec.
Sampling rate 512 Hz
Time period 8 sec.

Number of data points 4096

The undamaged configuration of the system was when all the springs were 

identical with a linear spring constant. Placing a bumper between two adjacent masses so 

that the movement of one mass is limited relative to the other mass simulated nonlinear 

damage, see Figure 5-2. The level of damage was controlled by changing the amount o f 

relative motion permitted before contact.

52

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Figure 5-1. An Eight-DOF System Attached to a Shaker with Accelerometers Mounted
on Each Mass [28.]

Figure 5-2. A Typical Bumper used to Simulate Nonlinear Damage [28]

Three test configurations were used in this study: Undamaged; Damage-1,

bumper between masses 5 and 6 with 0.2 millimeter clearance and; Damage-2, bumper 

between masses 5 and 6 with 0.4 millimeter clearance. These were chosen to determine 

if the NL-ARX-GLS method could distinguish the difference between a linear and non-
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linear system, as well as two similar nonlinear configurations. Data for five tests in each 

configuration at the same level o f random excitation were used.

To extract an accurate nonlinear model, the displacement o f each mass was 

needed, since the nonlinearity o f the system was a function of displacement. The 

sampling frequency of the accelerometer was not high enough to accurately extract the 

displacement o f each mass. So it was decided to proceed using the accelerometer data to 

investigate the robustness of the damage detection method.

To further exercise the ability of the SI/MO NL-ARX-GLS identification method, 

a purposely too high of order was chosen for the output fit, as well as nonlinearities were 

assumed between every output, not just adjacent masses. Table 5-2 contains the 

identification parameters used for every output channel.

Table 5-2. SI/MO NL-ARX-GLS Parameters used for Eight-DOF System

Parameter Value
P 3

Q 1
R 8

Number of 
Chebyshev Polynomials in Basis 
for all channels and differences

8

Length o f 
Basis Vectors 1000

GLS Tolerance 1.0E-09
Maximum Iterations 20

The identification was performed on all five tests for the three test configurations 

being studied. The mean and standard deviation o f the Undamaged configuration was 

calculated; in general it would be desirable to have more than five averages to have a 

more statistically significant bound, but only five were available for each case. The mean
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of the Damage-1 configuration was also determined. The Damage-1 results were then

compared to the bound of the Undamaged configuration.

Figure 5-3 contains the comparison of the coefficients for the difference between 

consecutive masses in Equation 4-19. The numerical values plotted correspond to how 

well the Damage-1 coefficients match that o f Undamaged. A value o f zero equates to the 

Damage-1 coefficient being within one standard deviation of the Undamaged model; one 

is between one and two standard deviations; two is between two and three standard 

deviations, and so on.

First Order Coefficients (n-1)
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o
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o
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Y6 - Y7
o
m Y 5 -Y 6  

Y4 - Y5o
%  Y 3 -Y 4  
o
O  Y2 - Y3 

Y1 - Y2

• a f t

-30 -20 -10 0 10 

Second Order Coefficients (n-2)
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>3 Sigma 
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Figure 5-3. Damage-1 Compared to Undamaged Difference Coefficients

Figure 5-3 shows a consistent large difference for the coefficients to the ys-ye 

term in Equation 4-19. It also shows differences for the y^-y? coefficients. Using the data
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from Figure 5-3, one would have a clear indication that something has changed at or near 

output Channels 5 and 6, requiring a physical inspection.

Figure 5-3 shows that the SI/MO NL-ARX-GLS identification method is capable 

of identifying possible areas of damage for cases when the damage causes a linear system 

to become nonlinear. The next case will demonstrate the capabilities when a nonlinear 

system’s parameters change.

The identified coefficients from the Damage-1 and Damage-2 tests were 

compared in the same way that the Undamaged and Damage-1 data were evaluated. 

Figure 5-4 reveals that the developed identification method recognized the change in the 

y5- y 6 coefficients for Equation 4-19, indicating a possible area o f damage.
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Figure 5-4. Damage-2 Compared to Damage-1 Difference Coefficients
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As mention before, the data from the Los Alamos eight-DOF tests was not ideal. 

This is due to the nonlinearity being a function of displacement and the temporal 

resolution o f the accelerometer data not being fine enough to extract displacement. To 

demonstrate how the method would perform with data more suited for identifying 

nonlinear behavior, which is a function o f displacement, simulated data sets were 

generated. The model used for the simulation had parameters similar to that of the Los 

Alamos eight-DOF test rig. Five tests at similar configuration to Undamaged, Damage-1 

and Damage-2 were generated using random forcing functions at levels producing similar 

accelerations to the Los Alamos tests. The displacement of each mass was recovered at 

10,000 Hz. These simulated tests will be referred to as Undamaged-s, Damage-Is and 

Damage-2s.

The identification parameters were also changed to take advantage of the methods 

capability of identifying hard nonlinear characteristics. The earlier identification was 

performed with Chebyshev Polynomials, which is best for smooth nonlinear behavior; 

this was done to show the methods insensitivity to incorrect identification parameters. 

However, for the simulated case, the assumption is made that it is required to detect 

changes o f the nonlinearity on the order o f tenths of millimeters. Therefore, 50 block 

functions were used for the basis set. The order o f the auto-regressive portion of the fit 

was lowered from three to two and the number o f points in the basis vector was reduced 

from 1000 to 100. Using 1000 points would have added to the resolution, but combining 

the large number o f points with 50 basis vectors would have led to excessive execution 

times. Table 5-3 contains a complete list of the identification parameters used.
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Table 5-3. SI/MO NL-ARX-GLS Parameters used for Simulated Eight-DOF System

Parameter Value
P 2

Q 1
R 8

Number of 
Block Function in Basis set 

for all channels and differences
50

Length of 
Basis Vectors 100

GLS Tolerance 1.0E-09
Maximum Iterations 20

A nominal amount o f noise was added to the input and outputs o f the system. An 

interesting characteristic o f the method was discovered while performing the 

identification on the simulated data. The preliminary simulations were executed without 

synthesized noise, the data from these cases resulted erratic and unrealistic coefficients.

The source o f the problem was determined to be that the M  matrix (Equation 4-7) 

was near singular when uncorrelated noise was absent for systems with a larger number 

o f outputs (approximately greater than five). The QR factorization and rank routines 

from MATLAB were generating a set of vectors that were not as linear independent as 

needed. Employing the slower, but more rigorous method used by Zou [19], it was 

possible to generate accurate coefficients with noise-free analytical data. Zou builds the 

M  matrix vector by vector; for example, using y {) (n - 1) to fit (n - 1) by least squares 

and calculate the residual of the fit. If the residual is larger than a preset threshold, then 

jK ,(«-l)is considered to be linear independent o f y 0( n - 1) and the two are combined to 

begin the formation of the M  matrix. The process is then repeated with the remaining
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vectors. Vectors are added to the M  matrix if  it is not possible to form a linear 

combination with the current M  matrix using the residual as a test.

Although this method works, it is much slower than using QR factorization and 

greatly increases execution time for large systems. It is recommended to use the QR 

factorization in lieu of Zou’s method. The requirement for noise should not be a problem 

when using actual test data, but should be kept in mind when applying it to idealized data. 

Although not utilized during the course of this research, a recursive least-squares method, 

such as that in Reference [30], could also be applied to find the coefficients.

Statistical evaluation o f the SI/MO NL-ARX-GLS identification results 

successfully showed a changed in the coefficients near zero relative displacement when 

the nonlinearity was introduced to the system. Figure 5-5 shows a large change in 

coefficients between the Undamaged-s and Damage-Is configuration for ys-y6 near zero. 

It also incorrectly identifies V4 - V 5 as a possible damaged area. False identification 

between adjacent masses to the damaged area was also indicated in Figure 5-3 for the 

Undamaged to Damge-1 evaluation of the Los Alamos test data.

The statistical comparison of the simulated Damage-2s to Damage-Is 

configuration shows a clear indication of possible damage between masses 5 and 6, near 

zero displacement (Figure 5-6). No other coefficients show large differences.
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Figure 5-5. Simulated Damage-Is Compared to Undamaged-s Difference Coefficients
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Chapter 6 - Summary

This Chapter examines the conclusions that are drawn from the research covered, 

illustrates how to apply the developed method, as well as outlines future research that 

could bring increased performance and further utility to the SI/MO NL-ARX-GLS 

method developed.

6.1 Conclusions

A method for performing system identification of nonlinear single-input/multiple- 

output systems has been developed (SI/MO NL-ARX-GLS). The method utilizes basis 

sets to form a pool of linear independent vectors. Coefficients are found, using least 

squares, to form linear combinations o f the vector pool to generate ARX coefficients that 

are a function o f the states (outputs) o f the system. Using a filter created with the 

residuals, the effects o f noise on the input and outputs are reduced. The process is then 

repeated by recalculating the coefficients using the filtered input and outputs until the 

residuals converge. This is performed on each output independently.

The SI/MO NL-ARX-GLS identification method was demonstrated on a three 

degree-of-freedom nonlinear numerical example. The accuracy of the identified model 

was demonstrated by the close match o f results from the truth model to the identified 

model using a different input than what was used for the identification. It was then 

shown how the coefficients from the identified model could be used for nonlinear 

damage detection, as well identification of a linear system that becomes nonlinear after 

being damaged. This was accomplished by using data from tests performed at Los 

Alamos on a nonlinear eight degree-of-freedom system. Not only did the method
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accurately identify the “damage” in the model, it did so using non-ideal data. 

Acceleration data was used, whereas the nonlinearity was a function o f displacement; the 

model order was chosen too high and it was assumed that nonlinearities existed between 

every output. A numerical example, similar to the Los Alamos test rig, was used to show 

the methods capability o f identifying the location of the damage in the operating range.

A SI/MO NL-ARX-GLS method was successfully developed and proven to be 

accurate in both producing models that represented the original system and finding 

locations of possible damage.

The benefits o f the developed method are that it is capable o f producing a state- 

dependent ARX model with discontinuous coefficients to reproduce the characteristics of 

a nonlinear system. This can be accomplished using corrupted input and output data. 

The results from the identification are then used for damage detection, applicable to both 

a linear system that becomes nonlinear after damage and a nonlinear system whose 

characteristics change after damage. The location and range of operation o f the damage 

are predicted.

6.2 Application of NL-ARX-GLS

The nonlinear system identification method developed within this dissertation can 

be applied in a pure system identification role, or for damage detection. There are subtle 

differences in the identification process depending on the application. These differences 

are centered on how well the identified model reproduces the original results. In a system 

identification role, the focus is on how well the model reproduces the actual system. In a 

damage detection application, the ability to detect changes in the system at a given 

resolution is the goal. The following is a guide on how to apply the SI/MO NL-ARX-
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GLS method in both roles. Although the method was developed for black-box 

applications, the subsequent text will assume some characteristics o f the system are 

known.

Choosing the correct instrumentation, placement, and sample rate is key to how 

well the method will perform in both roles. The key contributor to this selection is the 

type and location of the expected nonlinearities, as well as the system’s natural 

frequencies. The measurements should be, or be able to be converted into, the parameter 

the nonlinearity is a function of. For instance, a crack’s behavior is a function of 

displacement; coulomb friction is a function o f velocity. If one is using an accelerometer 

but needs displacement, the sample rate and accuracy need to be adequate for estimating 

the displacement. An estimate of the initial conditions is also required if the nonlinearity 

is a function of relative displacement or velocity of two measurements. The 

characteristics o f the nonlinearity and the quality o f the data due to noise both have to be 

considered as well when choosing the sample rate.

Accurately identifying a quickly changing nonlinearity, such as a hard stop, 

clearly drives the sample rate up. Less obviously, coping with noisy data drives the 

sample rate down. This can be explained by using the simple estimate for the derivative 

of a measurement

dy = jC i - y a„ , 8  6 '1
dt At At

where superscript “a” refers to actual value, At is the time step and S  is the noise 

contribution. Equation 6-1 shows that as the time step is increased, the noise has less 

effect for a given noise level. O f course, the time step has to be adequate for the highest 

frequency o f interest.
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The effect of sample rate on noise can be demonstrated using the system and 

forcing function from Section 4.1.1, without the hard stop. Figure 6-1 shows the 

Goodness o f Fit [31] from ARX-GLS identification of simulations with different sample 

rates and SNR. The figure shows how larger time steps generate good fits for lower SNR 

as compared to identifications with smaller time steps. Therefore, if  applying NL-ARX- 

GLS identification to a system that requires small time steps to accurately identify a 

nonlinearity, care must be taken in getting the cleanest possible measurements.
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Figure 6-1. Interaction o f Sample Rate and Noise on Goodness o f Fit

If  the goal o f the identification is an accurate model for duplicating the system’s 

behavior, an approach for finding the optimum identification parameters similar to that 

outlined in Section 4.1.1 should be followed. However, if damage detection is the 

purpose, the selection o f the basis set and number o f points in the basis vector is driven 

by the required detectable changes in the ARX coefficients. This was demonstrated with
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the numerical example in Section 5.1.1. The combination of the number o f Walsh 

functions and the number of points describing the basis vectors yielded the capability of 

detecting changes o f the nonlinearity on the order of tenths o f millimeters. The ability of 

the model to duplicate the original system response is not necessary when performing 

damage detection.

The number and location o f nonlinearities in the system being identified or the 

resolution o f which to detect damage drive the placement of measurements. 

Measurements closely coupled to nonlinearities will generate the best characterization of 

the nonlinearity and more measurements will result in more refined estimates o f damage 

location.

6.3 Recommended Future Research

Increased performance and further utility o f the SI/MO NL-ARX-GLS method 

can be achieved by accomplishing the following task.

The method used for finding the optimum model order and basis sets was valid 

but time consuming. It involved performing a series o f identifications using all possible 

combinations o f the parameters being studied and used the set that generated the smallest 

Root-Sum-Square-Error of the output model being identified. The development of an 

optimization method for finding both the model order and basis set would both increase 

the speed and the accuracy o f the identification, due it allowing a larger space to be 

searched. Execution time might also be improved by using a recursive least-squares 

method to find the coefficients to the basis functions.

The code written and the single processor used for this research did the 

identification for each output serially. Due to the SI/MO NL-ARX-GLS method
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performing identification on each output independently, they could be performed in 

parallel if  the resources were available. Adapting the code to run on multiple processors 

would greatly speed up the identification process.

This research applied the developed identification method to damage detection of 

nonlinear system, yet the ability to create accurate models lends it to the development of 

control laws as well. The model could be linearized at discrete points throughout its 

operational envelope. The characteristics of the linearized versions of the model could 

then be used to develop control laws for the input to achieve the desired output 

performance.
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Appendix A -  Time-Invariant Linear ARX Model Identification Routine

function[a,b,ystar] = arx_simple(y,u,P,Q);
%
% [alpha,beta,ystar] = arx_simple(v,u,P,Q)
%
% finds coefficients for ARX model of the form:
% y(n) = a(l)*y(n-l) +...+ a(P)*y(n-P) + b(0)*u(n) +...+ b(Q)*u(n-Q)
%
% Also returns synthesis of y ystar 
%
% find length o f data set 
ndata = length(y);
% initialize phi matrix 
phi = zeros(ndata,P+Q+l);
% populate phi matrix 
for n = 1 :ndata 

for idata = 1 :P 
if n-idata > 0 

phi(n,idata) = y(n-idata); 
end 

end
for jdata = 0:Q 

if n-jdata > 0
phi(n,P+l+jdata) = u(n-jdata); 

end 
end 

end
% find, coefficients using least squares 
theta = inv(phi'*phi)*phi'*y;
% divide coefficients in to “a" and “b” 
a = theta(l :P); 
b = theta(P+l :P+Q+1);
%
% synthesize response for comparison to original data
%
% initialize ystar vector 
ystar = zeros(ndata,l);
% perform synthezsis using coefficeints found above 
for n = 1 :ndata 

for idata = 1 :P 
if n-idata > 0

ystar(n) = ystar(n) + a(idata)*ystar(n-idata); 
end 

end
for jdata = 0:Q
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if  n-jdata > 0
ystar(n) = ystar(n) + b(jdata+l)*u(n-jdata); 

end 
end 

end
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Appendix B -  Orthogonal Basis Generating Routines

function [wf] = walsh(nfun,ndata);
%
% [wf] := walsh(nfun,ndata)
%
% generates the first "nfun" walsh functions with "ndata" values 
% ~

% ndata needs to be an even integer 
%
w f=  zeros(nfun,ndata); 
w f(l,:) = ones(l,ndata); 
for iodd = 2:2:nfun-l

wf(iodd, 1 :ndata/2-1) = wf(iodd-1,1 :ndata/2-1); 
wf(iodd,ndata/2 :ndata) = -wf(iodd-l,ndata/2:ndata); 
ieven = iodd+1;
wf(ieven,l:ndata/2) = w f((ieven-l)/2+l,l:2:ndata-l);
wf(ieven,ndata/2+l :ndata) = wf((ieven-l)/2+l,l :2:ndata)*(-l).A((ieven-l)/2); 

end
if  nfun/2 == floor(nfun/2)

wf(nfun, 1 :ndata/2-1) = wf(nfun-1,1 :ndata/2-1); 
wf(nfun,ndata/2:ndata) = -wf(nfun-l,ndata/2:ndata);

end

function [cfj = cheby(nfun,ndata);
%
% [wt] = cheby(ndata)
%
% Generates the first "nfun" Chebyshev Polynomials of the first kind 
% with "ndata" values 
%
ymax = 1; 
ymin = -1;
m = (ymax - ymin)/(ndata - 1); 
b = ymin - m;

cf(l,:) = ones(l,ndata); 
for idata = 1: ndata 

x = idata*m + b; 
for n = 1 :nfun-l 

cf(n+l,idata) = 0; 
for k = 0:n/2

cf(n+l,idata) = cf(n+l, idata) + n/2*(-l)Ak*factorial(n-k-l)/factorial(k)/factorial(n- 
2*k)*(2*x)A(n-2*k); 

end
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end
end

function [bf] = block(nfun,ndata);
%
% [bf] = block(nfun,ndata)
%
% generates "nfun” block pulses with "ndata" values 
% ~

step = ndata/nfun; 
b f = zeros(nfun,ndata); 
for ifun = 1 :nfun

bf(ifun,round((ifun-l)*step)+l:round(ifun*step)) = 1; 
end
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Appendix C -  State-dependent Nonlinear ARX Model Identification Routines

function [a,b,ys] = NLARX(y,u,P,Q,nfunb,nfunw,nfunc,nvec);
%
% [a,b,ys] = NLARX(y,u,P,Q,nfunb,nfunw,nfunc,nvec)
%
% Nonlinear ARX model identification - Si/SO 
%
% y = output 
% u = input
% P = Order of output fit
% Q = Order of input fit 
% nlunb = number o f block functions 
% nfunw = number of vectors in Walsh basis 
% nfunc = number of vectors in Chebyshev basis 
% nvec = length of basis vector 
% a = output coefficients 
% b = input coefficients 
% ys = synthesis o f y with IDed model

% define block basis to be used 
disp('Generating Block Basis')
[bkf] = block(nfunb,nvec);

% define walsh basis to be used 
disp('Generating Walsh Basis')
[wf] = walsh(nfunw,nvec);

% define Chebyshev to be used 
disp('Generating Chebyshev Basis')
[cf] = cheby (nfunc,nvec);

% generate vector pool 
disp('Generating Vector Pool')
[bf] = [bkf,w f,cf]';
[yk,uk,xy] = pool(y,u,bf,P,Q);

% find linear independent set o f vector pool 
disp('Selecting Linear Independent Vectors from Pool') 
[yindex,uindex] = linindi(yk,uk);

% assemble new matrix pool 
disp('Assembling LI Vectors')
W = [yk(:,yindex),uk(:,uindex)];

% find ARX model coefficients '

76

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

disp('Solving for Coefficients') 
c = pinv(W)*y;

% assemble a and b coefficients 
disp('Constucting a and b Coefficients')
[a,b] = assemble(bf,yindex,uindex,c);

% trim a and b coefficients outside o f ID range 
disp('Trim a and b Coefficients')
[a,b] = trim(a,b,xy,y);

% reproduce response with SV-ARX model 
disp('Reconstucting Original Input')
[ys] = timeh(a,b,xy,u);function[yk,uk,xy] = pool(y,u,bf,P,Q);

function [yk,uk,xy] = pool(y,u,bf,P,Q);
%
% Generates vector pool for SV ARX 
%
% [yk,uk,xy] = pool(y,u,bf,P,Q)
%
% y = system output 
% u = system input 
% P = order o f autoregressive model 
% Q = order of moving average model 
% bf(nfun,nvec) = basis set of vectors 
% nfun - number of vectors
% nvec = length of vectors
%

% determine size o f basis 
[nfun,nvec] = size(bf);

% map basis vector to range o f y 
ymax = max(y)+abs(max(y)-min(y))*. 1; 
ymin = min(y)-abs(max(y)-min(y))*.l; 
slope = (ymax - ymin)/(nvec - 1); 
inter = ymin - slope; 
xy = [1 :nvec]* slope + inter;

fu n m at = interpl(xy',bf,y');

% generate y pool vectors 
yk = zeros(length(y),P*nfun); 
for idata = 1 :P 

for k = 1 :nfun
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for n = 2:length(y) 
if  n-idata > 0

yk(n, (idata-1) * nfun+k) = fun_mat(n-1 ,k).* y(n-idata); 
end 

end 
end 

end

% generate u pool vectors 
uk = zeros(length(y),Q*nfun); 
for jdata = 0:Q 

for k = 1 :nfun
for n = 2:length(y) 

if n-jdata > 0
uk(n,(jdata)*nfun+k) = fun_mat(n-l,k).*u(n-jdata); 

end 
end 

end 
end

function[yindex,uindex] = linindi(yk,uk);
%
% [yindex,uindex] = linindi(yk,uk)
%
% This routine is used with the SVOPS method. It retruns the indices of 
% the linearly independent vectors in yk and uk.
%
%

[nvec,nyk] = size(yk);
[nvec,nuk] = size(uk);

yindex = []; 
uindex = [];

% estimate rank 
r = rank([yk uk]);

% perform QR 
[Q,R,E] = qr([ykuk]);

for isort = 1 :r
nfind = find(E(:,isort)); 
if  nfind <= nyk

yindex = [yindex,nfind]; 
else
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uindex = [uindex,nfind-nyk]; 
end 

end
***********************************************************************
function[a,b] = assemble(bf, yindex, uindex, c);
%
% [alpha,beta] = assemble(bf,yindex,uindex,c)
%
[nfun,nvec] = size(bf); 
a = zeros(max(ceil(yindex/nfun)),nvec); 
b = zeros(max(ceil(uindex/nfun)),nvec);

for ydata = 1 :length(yindex) 
idata = ceil(yindex(ydata)/nfun); 
k = yindex(ydata) - (idata- l)*nfun; 
a(idata,:) = a(idata,:) + c(ydata)*bf(k,:); 

end

cshift = length(yindex); 
for udata = 1 :length(uindex) 

jdata = ceil(uindex(udata)/nfun); 
k = uindex(udata) - (jdata-l)*nfun; 
b(jdata,:) = b(jdata,:) + c(udata + cshift) *bf(k,:); 

end
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function[a,b] = trim(a,b,xy,y);
%
% [at,bt] = trim(a,b,xy,y)
%
% This routine truncates the a and b coefficients to 
% the value at the minimum and maximum value of y.
%
% a - output coefficients o f SV-ARX mode! (and truncated)
% b - input coefficients of S V-ARX model (and truncated)
% xy - independent vector for coefficients
% y - output vector used to construct SV-ARX model
%
%
[P,nvec] = size(a);
[Q,nvec] = size(b);

maxy = max(y); 
miny = min(y);

cutlow = find(xy<miny); 
cuthigh = find(xy>maxy);
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for iP = 1 :P
a(iP,cutlow) = a(iP,cutlow(end)); 
a(iP,cuthigh) = a(iP,cuthigh(l));

end

for iQ = 1:Q
b(iQ,cutlow) — b(iQ,cutlow(end)); 
b(iQ,cuthigh) = b(iQ,cuthigh(l));

end

function [ys] = timeh(a,b,xy,u);
%
% [ys] := timeh(a,b,xy,u)
%

[P,nvec]=size(a);
[Q,nvec]=size(b);
Q = Q-1;
ndata = length(u);
ys = zeros(ndata,l);

fo rn  = 2:ndata 
for idata = 1 :P 

if n-idata > 0
test = isnan(interpl(xy,a(idata,:),ys(n-l),'linear','extrap')); 
if  test > 0

'NaN in timeh.m' 
n
return

end
ys(n) = ys(n) + ys(n-idata)*interpl(xy,a(idata,:),ys(n-l),'linear',’extrap'); 

end 
end
forjdata = 0:Q 

if  n-jdata > 0
ys(n) = ys(n) + u(n-jdata)*interpl(xy,b(jdata+l,:),ys(n-l),'linearVextrap'); 

end 
end

end
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Appendix D -  Nonlinear ARX Generalized Least Squares Routines

function [a,b,xy,ys] = NLARXGLS(y,u,P,Q,R,nfunb,nfunw,nfunc,nvec,tolgls,maxiter);
%
% [a,b,ys] = NLARXGLSfy,u,P,Q,Rjifunb,iifunw,nfunc,nvec,tol_gls,maxiter)
%
% Nonlinear ARX-GLS model identification - SI/SO 
%
% y = output 
% u = input
% P = Order o f output fit 
% Q = Order of input fit 
% R = Order o f GLS filter 
% nfunb =; number of block functions 
% nfunw = number of vectors in Walsh basis 
% nfunc = number of vectors in Chebyshev basis 
% nvec = length of basis vector 
% a ••••• output coefficients 
% b = input coefficients 
% ys = synthesis o f y with IDed model 
% tol_gls = generalized least squares error tolerance 
% maxiter = maximum number o f iterations

% define block basis to be used 
disp('Generating Block Basis’)
[bkf] = block(nfunb,nvec);

% define walsh basis to be used 
disp('Generating Walsh Basis')
[wf| = walsh(nfunw,nvec);

% define Chebyshev to be used 
disp('Generating Chebyshev Basis')
[cf] = cheby(nfunc,nvec);

% set initial filtered value to raw data
y f= y ;
u f = u;

% initialize residue vector 
eo = ones(size(y)); 
test = 1; 
iter = 0;

% check for convergence and number of iterations 
while test > tol gls & iter < maxiter
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iter = iter + 1; 
disp('Iteration Number') 
disp(iter)

% generate vector pool 
disp('Generating Vector Pool')
[bf] = [bkf ,w f ,cf]';
[yk,uk,xy] = pool(yf,uf,bf,P,Q);

% find linear independent set of vector pool 
disp('Selecting Linear Independent Vectors from Pool’) 
[yindex,uindex] = linindi(yk,uk);

% assemble new matrix pool 
disp('Assembling LI Vectors')
W = [yk(:,yindex),uk(:,uindex)];

% find NLARX model coefficients 
disp('Solving for Coefficients') 
t = pinv(W)*yf;

% calculate residual 
e = yf - W*t;

% find change In residue for convergence test
test = abs((e'*eo)-eo'*eo)/(eo'*eo);
rmse = sqrt(sum((e-eo).A2));
disp('Convergence Test’)
disp(test)
eo = e;

% call generalized least squares routine 
disp('Call GLS')
[yf,uf] = gls(y,yf,uf,e,R);

end

% assemble a and b coefficients 
disp('Constucting a and b Coefficients')
[a,b] = assemble(bf,yindex,uindex,t);

% trim a and b coefficients outside o f ID range 
disp('Trim a and b Coefficients')
[a,b] = trim(a,b,xy,y);
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% reproduce response with SV-ARX model 
disp('Reconstucting Original Input')
[ys] = timeh(a,b,xy,u);

function[yf,uf] = gls(y,yfo,ufo,e,R)
%
% [yf,uf] = gls(y,yf,uf,e,R)
%
% Generalized Least Squares
% filters input and output based on AR model of error 
%
% y - raw input 
% yf - filtered output 
% uf - filtered input 
% e - solution residuals 
% R - order o f filter 
%
clear BB
for n = 1 :length(y) 

for Idata = 1 :R 
if n-ldata > 0

BB(n,Idata) = e(n-ldata); 
end 

end 
end
% find AR noise model coefficients 
c = -pinv(BB)*e;

y f = yfo; 
u f -  ufo;

for n = 1 :length(y) 
for Idata = 1 :R 

if n-ldata > 0
yf(n) = yf(n) + c(ldata)*yfo(n-ldata); 
uf(n) = uf(n) + c(ldata)*ufo(n-ldata); 

end 
end 

end
scale = sqrt(var(y)/var(yf)); 
y f = yf* scale; 
u f = upscale;
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Appendix E -  Single-Input/Multiple-Output Nonlinear ARX -  GLS Routines

% SI/MO Nonlinear ARS-GLS Parameters 
% used in example in Section 4.3.1 
%
nout —3; % number of outputs
nvec = 1000; % length of basis vector
tol_gls = le-9; % convergence tolerance for GLS
maxiter = 200; % maximum iterations
% pre-filter input and outputs
y l f  = prefilt(yl);
y2f = prefilt(y2);
y3f = prefilt(y3);
ufl = prefilt(fl);
y=[ylf,y2f,y3f];
u=[ufl];
f=[fl];
time = [0:length(yl)-l]*.01;
% DOF 1 Parameters 
iref = 1;
P(iref) = 2; % Order o f Output Model
Q(iref) = 1; % Order of Input Model
R(iref) = 8; % Order of Error Model
nfunw(l ,iref) = 1; % number of vectors in Walsh basis for y 1 
nfunw(2,iref) = 1; % number of vectors in Walsh basis for yl-y2 
nfunw(3,iref) = 1; % number of vectors in Walsh basis for yl-y2 
nfunc(l,iref) = 4; % number o f vectors in Chebyshev basis for yl 
nfunc(2,iref) - 4; % number of vectors in Chebyshev basis for yl-y2 
nfunc(3,iref) = 1; % number of vectors in Chebyshev basis for yl-y2 
nfunb(l,iref) = 1 ; % number of block pulse basis for yl 
nfunb(2,iref) = 1 ; % number of block pul se basis for yl-y2 
nfunb(3,iref) = 1; % number of block pulse basis for yl-y2 
% Peform ID for DOF 1
[a l,b l,xy l,ysl] = mnlarxgls(y,u,P(iref),Q(iref),R(iref),nfunw(:,iref)... 

,nfunc(:,iref),nfunb(:,iref),nvec,tolgls,maxiter,iref);
% DOF 2 Parameters 
iref = 2;
P(iref) = 2; % Order o f Output Model
Q(iref) = 1; % Order of Input Model
R(iref) = 8; % Order of Error Model
nfunw(l ,iref) = 1; % number of vectors in Walsh basis for v2 
nfunw(2,iref) = 1; % number of vectors in Walsh basis for y2-y 1 
nfunw(3,iref) = 1; % number of vectors in Walsh basis for y2-y3 

% number of vectors in Chebyshev basis for y2 
% number of vectors in Chebyshev basis for y2-yl 
% number of vectors in Chebyshev basis for y2-y3

nfunc(l,iref) = 1 
nfunc(2,iref) = 4 
nfunc(3,iref) = 1
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nfunb(l,iref) = 14; % number of block pulse basis for v2 
nfunb(2,iref) = 1; % number of block pulse basis for y2-yl 
nfunb(3,iref) =13; % number o f block pulse basis for y2~y3 
% Peform ID for DOF 2
[a2,b2,xy2,ys2] = mnlarxgls(y,u,P(iref),Q(iref),R(iref),nfunw(:,iref)...

,nfunc(:,iref),nfunb(:,iref),nvec,tolgls,maxiter,iref);
% DOF 3 Parameters 
iref = 3;
P(iref) = 2; % Order of Output Model
Q(iref) = 1; % Order o f Input Model
R(iref) = 8; % Order of Error Model
nfunw(l ,iref) = 1; % number of vectors in Walsh basis for y3
nfunw(2,iref) = 1; % number of vectors in Walsh basis for y3-yl
nfunw(3,iref) = 1; % number o f vectors in Walsh basis for y3-y2
nfunc(l ,iref) = 4; % number of vectors in Chebyshev basis for y3 
nfunc(2,iref) = 1; % number o f vectors in Chebyshev basis for y3-y 1 
nfunc(3,iref) = 1; % number o f vectors in Chebyshev basis for y3-y2 
nfunb(l ,iref) = 1; ’% number o f block pulse basis for v3 
nfunb(2,iref) = 4; % number of block pulse basis for y3-yl 
nfunb(3,iref) = 15; % number of block pulse basis for y3-y2 
% Peform ID for DOF 3
[a3,b3,xy3,ys3] = mnlarxgls(y,u,P(iref),Q(iref),R(iref),nfunw(:,iref)...

,nfunc(:,iref) ,nfunb(:,iref),nvec,tolgls,maxiter,iref);
% Synthesis original measure data 
xy = [xyl xy2 xy3]; 
a = [ a l ' a 2 '  a3']’; 
b = [bl' b2' b3']';
[yy] = simotimeh(f,nout,P,Q,a,b,xy); 

function[xf] = prefilt(x);
C) /70

% Routine for pre-filtering data 
%
% [xf] = prefilt(x)
%
% x - input 
% xf - output 
%
ndata = length(x); 
x f = zeros(size(x)); 
xf(l) = x(l); 
for idata = 2:ndata;

xf(idata) = (x(idata) + x(idata-l))/2; 
end

function[a,b,xy,ys] = mnlarxgls(y,u,P,Q,R,nfunw,nfunc,nfunb,nvec,tolgls,maxiter,iref)
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% [a,b,ys] = NLARXGLS(y,u,P,Q,R,nfunw,nfunc>nfunb,nvec,tol_gls,maxiter,iref) •
%
% Nonlinear AR'X-GLS model identification - SI/SO 
%
% y = output 
% u = input
% P = O rder o f output fit 
% Q = Order of input fit 
% R = Order o f GLS filter 
% nfunb = number of block functions 
% nfunw = number of vectors in Walsh basis 
% nfunc = number of vectors in Chebyshev basis 
% nvec = length of basis vector 
% a = output coefficients 
% b = input coefficients 
% ys = synthesis of y with IDed model 
% tol_gls = generalized least squares error tolerance 
% maxiter = maximum number of iterations 
% iref = reference channel

% determine number of input/outputs and length of data 
[ndata,nout] = size(y);
[ndata, nin] = size(u);

% define block basis to be used
bf = zeros(max(nfunw)+max(nfunc)+max(nfunb)+l,nvec,nout); 
for iout = 1 :nout

bf(l :nfunw(iout),l :nvec,iout) = walsh(nfunw(iout),nvec);
bf(max(nfunw)+l :max(nfunw)+nfunc(iout),l :nvec,iout) = cheby(nfunc(iout),nvec); 
bf(max(nfunw)+max(nfunc)+l :max(nfunw)+max(nfunc)+nfunb(iout), 1 :nvec,iout)=. 

block(nfunb(iout),nvec);
end

% set initial filtered value to raw data 
u f = u ;

% populate yf with y(iref) in first column, out diff in rest of columns 
iload = 2; 
for iout = 1 :nout; 

if  iout == iref 
yf(:,l) = y(:,iref); 
m axy(l) = max(yf(:,l)); 
m iny(l) = min(yf(:,l)); 

else
yf(:,iload) = y(:,iref) - y(:,iout);
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maxy(iload) = max(yf(:,iload)); 
miny(iload) = min(yf(:,iload)); 
iload = iload + 1; 

end 
end

% initialize residue vector 
eo = ones(length(y),l); 
test = 1; 
iter = 0;

% check for convergence and number o f iterations
while test > tol_gls & iter < maxiter
iter = iter + 1;
disp('Iteration Number')
disp(iter)

% generate vector pool 
disp('Generating Vector Pool')
[yk,fk,xy] = mpool(yf,uf,bf,P,Q);

% find linear independent set o f vector pool 
disp('Selecting Linear Independent Vectors from Pool') 
[yindex,uindex] = linindi(yk,fk);

% assemble new matrix pool 
W = [yk(:,yindex),fk(:,uindex)];

% find NLARX model coefficients 
disp('Find ARX Coefficients') 
t = pinv(W)*yf(:,l);

% calculate residual 
disp('Calculate Residuals') 
e = yf(:,l) - W*t;

% find change in residue for convergence test 
test = abs((e'*eo)-eo'*eo)/(eo'*eo); 
disp('Convergence Test') 
disp(test) 
eo = e;

% call generalized least squares routine 
disp(’Call GLS')
[yfiuf] = mgls(y,yf,uf,e,R,iref);
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% plot status o f solution 
iload = 2; 
for iout = 1 :nout; 

if  iout —  iref 
subplot(nout,l,l) 
plot(y(:,iref)) 
hold on 
plot(yf(:,l),'r') 
legend raw filtered 
ylabel('reference') 
hold off 

else
subplot(nout, 1, iload) 
plot((y(:,iref) - y(:,iout))) 
hold on
plot(yf(:,iload), V) 
iload = iload + 1; 
hold off 

end
pause(.l)

end

end

% assemble a and b coefficients
[a,b] = assemble(bf,yindex;,uindex,t,P,Q,y,u);
% trim a and b coefficients outside o f ID range 
[a,b] = mtrim(a,b,xy,yf,u);
% reproduce response with SV-ARX model 
disp('Reconstruction of y with SV-ARX Model') 
[ys] = mtimeh(a,b,xy,u,y,iref,P,Q);

function[yk,uk,xy] = mpool(y,u,bf,P,Q);
%
% Generates vector pool for MIMO NL ARX GLS
%
% [yk,uk,xy] = pool(y,u,bfP,Q);
%
% y = system output 
% u = system input 
% P = Order o f output fit 
% Q = Order of input fit 
% bf(nfun,nvec) = basis set o f vectors 
% nfun - number of vectors
% nvec = length of vectors
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% determine size o f basis 
[nfun,nvec,nout] = size(bf);

[ndata,nout] = size(y);
[ndata,nin] = size(u);

% map basis vector to range of y  
for iout = 1 :nout

ymax = max(y(:,iout))+abs(max(y(:,iout))-min(y(:,iout)))*.l; 
ymin = min(y(:,iout))-abs(max(y(:,iout))-min(y(:,iout)))*.l; 
slope = (ymax - ymin)/(nvec - 1); 
inter = ymin - slope; 
xy(:,iout) = [l:nvec]'*slope + inter; 

end

yk = [];

% generate AR pool vectors 
for iout = 1 :nout

f unma t  = interpl(xy(:,iout)',bf(:,:,iout)',y(:,iout)'); 
ykt = zeros(length(y(:,iout)),P*nfun); 
for idata = 1 :P 

for k = 1 :nfun
for n = 1 :length(y(:,iout)) 

if  n-idata > 0
ykt(n,(idata-l)*nfun+k) = fun_mat(n-l,k).*y(n-idata,iout); 

end 
end 

end 
end
yk = [yk,ykt]; 

end

uk = [];
f un ma t  = interpl(xy(:,l)',bf(:,:,l)',y(:,l)');
% generate MA pool vectors 
for iin = 1 :nin

ukt = zeros(length(y(:,l)),Q*nfun); 
for jdata = 0:Q 

for k = 1 :nfun
for n = 2:length(y) 

if  n-jdata > 0
ukt(n,(jdata)*nfun+k) = fun_mat(n-l,k).*u(n-jdata,iin); 

end 
end
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end
end
uk=[uk,ukt];

end
***********************************************************************
function[yf,uf] = mgls(y,yfo,ufo,e,R,iref)
%
% [yf,uf] = gls(y,yf,u£e,R)
%
% Generalized Least Squares
% filters input and output based on AR model o f error 
%
% y - raw input 
% yf - filtered output 
% uf - filtered input 
% e - solution residuals 
% R - order o f filter 
%
[ndata,nout] = size(yfo);
[ndata,nin] = size(ufo);

clear BB
for n = 1 :length(y) 

for ldata = 1 :R 
if n-ldata > 0

BB(n,ldata) = e(n-ldata); 
end 

end 
end

% find AR noise model coefficients 
c = -pinv(BB)*e;

y f = yfo; 
u f = ufo;

for n = 1 :length(y) 
for ldata = 1 :R . 

if  n-ldata > 0 
for iout = 1 :nout

yf(n,iout) -  yf(n,iout) + c(ldata)*yfo(n-ldata,iout); 
end
for iin = 1 :nin

uf(n,iin) = uf(n,iin) + c(ldata)*ufo(n-ldata,iin); 
end 

end
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end
end
scale = sqrt(var(y(:,iref))/var(yf(:,l))); 
y f = y p  scale; 
u f -  upscale;

function[a,b] = massemble(bf,yindex,uindex,t,P,Q,y,u);
%
% [a,b] = massemble(bf,yindex,uindex,t,P,Q,y.u)
%
[nfun,nvec,nout] = size(bf);
[ndata,nout] = size(y);
[ndata,nin] = size(u); 
a = zeros(P*nout,nvec); 
b = zeros((Q+l)*nin,nvec);

for ydata = 1 :length(yindex)
iout = floor((yindex(y data)- l)/nfun/P+l); 
idata = ceil(yindex(ydata)/nfun); 
k = yindex(ydata) - (idata-l)*nfun; 
a(idata,:) = a(idata,:) + t(ydata)*bf(k,:,iout); 

end

tshift = length(yindex); 
for udata = 1 :length(uindex) 

jdata = ceil(uindex(udata)/nfun); 
k = uindex(udata) - (jdata-l)*nfun; 
b(jdata,:) -  b(jdata,:) + t(udata + tshift)*bf(k,:, 1); 

end

function [a,b] = mtrim(a,b,xy,y,u);
%
% [at.bt] = mtrim(a,b,xy,y)
%
% This routine truncates the a and b coefficients to 
% the value at the minimum and maximum value of v.
%
% a - output coefficients o f SV-ARX model (and truncated) 
% b - input coefficients o f S V-ARX model (and truncated) 
% xy - independent vector for coefficients 
% y - output vector used to construct SV-ARX model 
%
%
[nvec,nout] = size(xy);
[ndata,nin] = size(u);
[P,nvec]=size(a);
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P = P/nout;
[Q,nvec]=size(b);
Q = Q/nin;

for iout = 1 :nout; 
maxy(iout) -  max(y(:,iout)); 
miny(iout) = min(y(:,iout)); 

end

for iout = 1 :nout
cutlow = find(xy(:,iout)<miny(iout)); 
cuthigh = find(xy(:,iout)>maxy(iout)); 
for iP = 1 :P 

ia = (iout-l)*P + iP; 
a(ia,cutlow) = a(ia,cutlow(end)); 
a(ia,cuthigh) = a(ia,cuthigh(l)); 

end
if iout == 1 

for iin = 1 :nin 
for iQ = 1 :Q

ib = (iin-l)*Q + iQ; 
b(ib,cutlow) = b(ib,cutlow(end)); 
b(ib,cuthigh) = b(ib,cuthigh(l)); 

end 
end 

end 
end

function [ys] = mtimeh(a,b,xy,u,y,iref,P,Q);
%
% Recreates output time history 
%
%  [y s ] = mtimeh(a,b,xy,u,y,iref,P,Q);
%
[nvec,nout] = size(xy);
[ndata,nin] = size(u);
[Pd,nvec]=size(a); 
ys = zeros(ndata, 1); 
y f = zeros(ndata,nout); 
iload = 2; 
for iout = 1 :nout; 

if  iout == iref 
yf(:,l) = y(:,iref); 

else
yf(:,iload) = y(:,iout); 
iload = iload + 1;
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end
end

for n = 2:ndata 
for iout = 1 :nout 

if iout == 1 
ydata = ys; 

else
ydata = ys - yf(:,iout); 

end
for idata = 1 :P

ia = (iout-l)*P + idata ; 
if  n-idata > 0

ys(n) = ys(n) + ydata(n-idata)*interpl(xy(:, iout), a(ia, 
ydata(n-1),’linear’,'extrap');

end
end

end
for iin = 1 :nin 

for jdata = 0:Q
ib = (iin-l)*Q + jdata; 
if  n-jdata > 0

ys(n) = ys(n) + u(n-j data, iin)*interpl(xy(:,iref),b(ib+l, 
ys(n-1),'linear','extrap');

end
end

end
end

function [y] = simotimeh(u,nout,P,Q,a,b,xy);
%
% [y] = simotimeh(u,nout,P,Q,a,b,xy);
%
% u = input, vector (ndata)
% nout = number of outputs
% P = order of output fit for each output, vector (nout)
% Q = order of input lit for each output, vector (nout)
% a = output coefficients, [a_l a_2 ... ajnout], (sum(P)*nout,nvec) 
% b = input coefficients, [b_l b_2 ... b jiout], (
%
[ndata] = length(u); 
y = zeros(ndata,nout); 
for n = 2:ndata

for iout = 1 :nout 
xyshift = nout*(iout-l); 
if  iout > 1
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ashift = sum(P(l:iout-l))*nout; 
bshift = sum(Q(l:iout-l))+iout-l; 

else
ashift = 0; 
bshift = 0; 

end
forj = l:P(iout) 

if  n-j > 0
constant = interp 1 (xy(: ,xyshift+1 ),a(ashift+j, :),y(n-1,iout),'linear',' extrap'); 
y(n,iout) = y(n,iout) + y(n-j,iout)*constant; 

end 
end
ipass = 0; 
for pp = 1 :nout 

if  pp ~= iout 
ipass = ipass+1; 
for qq = 1 :P(iout) 

if  n-qq > 0
ia = ipass *P(iout) + qq; 
dely = y(n-l,iout) - y(n-l,pp);
constant=interpl(xy(:,xyshift+ipass+l),a(ashift+ia,:),dely,'linear','extrap'); 
y(n,iout)=y(n,iout) + (y(n-qq,iout)-y(n-qq,pp))* constant; 

end 
end 

end 
end
for ib = 0:Q(iout) 

if  n-ib > 0
constant = interp 1 (xy(: ,xyshift+1 ),b(bshift+ib+1,: ),y(n-1, iout), 'linear', 'extrap'); 
y(n,iout) = y(n,iout) + u(n-ib)* constant; 

end 
end 

end 
end
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